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Abstract

Some notes on measurement sharpness and its resource theory.

1 Introduction

While quantum theory has been traditionally developed around the concept
of observables as self-adjoint operators and their spectral decompositions
into orthogonal projections [1], it is a well-known fact that many fundamental
problems, such as optimal joint measurements of noncommuting observables,
and applications, such as optimal parameter estimation, require a more gen-
eral formalism, where orthogonal projective decompositions of the identity
are replaced by positive operator-valued measures, i.e., POVMs [2, 3, 4].

If POVMs constitute a notion of “approximate” observables, it is a natu-
ral question to ask, given a POVM, how close that is to an observable. This
question has led several researchers to consider the problem of formalizing a
concept of “sharpness” as a way to provide a quantitative measure of how
close a given POVM is to a proper observable [5, 6, 7, 8, 9], where the latter
is of course taken as the prototype of a perfectly sharp measurement.

In the light of recent developments in quantum information theory, it
seems natural [10] to characterize the concept of sharpness within the frame-
work of quantum resource theories [11], but attempts to construct a resource
theory of sharpness have so far been unsuccessful. In this work we fill this
gap by proposing a complete and operational resource theory of sharpness.
The picture that we obtain is that greatest elements, i.e., sharp POVMs,
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exist, and that they coincide with POVMs that admit a repeatable measure-
ment. Among these, conventional non-degenerate observables are singled
out as the “minimal” ones. This is perfectly in line with what one would
expect from a resource theory of sharpness. However, our sharpness resource
theory possesses some extra desirable features providing connections with
several areas of independent interest. First of all, the sharpness measures
(in jargon, the monotones) that we introduce are defined using Ozawa’s de-
grees of measurements correlation [12, 13] and, as such, are all in principle
experimentally accessible. Second, it is shown that the class of sharpness-
non-increasing transformations (in jargon, the class of free operations) cor-
responds to a restricted class of preprocessing channels applied not to the
given POVM, but to an extended object representing a family of POVMs,
thus establishing a direct connection with the theory of programmable mea-
surement devices [14, 15, 16]. Third, our sharpness monotones provide a
complete comparison (in the sense of Blackwell [17, 18]), in that one POVM
is sharper than another with respect to all such monotones if and only if the
former can be transformed into the latter by means of an appropriate free
operation.

The paper is organized as follows. In Section 2 we introduce notations
and basic definitions, and review the pre- and postprocessing preorders of
POVMs [19]. In Section 3 we define the set of free operations and show that
they can be regarded as preprocessings on objects that extend POVMs to
programmable devices. In Section 4 we review the theory of EPR–Ozawa
measurement correlations [12, 13] and use it to define a class of sharpness
measures, which are by construction non-increasing under free operations. In
Section 5 we prove a Blackwell–like theorem for sharpness, stating the equiv-
alence between the sharpness preorder, arising from comparing all sharp-
ness measures for a pair of POVMs, and the existence of a sharpness-non-
increasing transformation from one POVM into the other one. Finally, in
Section 6 we conclude the paper with a summary of our resource theory of
sharpness.

2 Quantum measurements and preorders

Let us consider a quantum system A associated with a finite dA-dimensional
Hilbert space HA. States of A are in one-to-one correspondence with density
matrices on HA, i.e., matrices ρA ⩾ 0 such that Tr[ρA] = 1. A quantum
state ρA contains all the information needed to predict the statistics of any
observation done on it, as modeled by a positive operator-valued measure
(POVM ), namely, a family P = {P x

A}x∈X of positive semi-definite operators
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P x
A ⩾ 0 labeled by the outcome set X (also assumed to be finite), such

that the completeness relation
∑

x∈X P
x
A = 1A, where 1 denotes the identity

matrix, is satisfied. For notational convenience, we will sometimes simply
take the outcome set X to be a subset of the natural numbers, i.e., X =
{1, 2, . . . , N}.

The interpretation of POVMs in terms of quantum measurements is based
on the Born rule, which postulates that to any observation with outcomes
in set X , there corresponds a POVM so that, if the state of the system is
given by ρA, the expected probability of occurrence of each outcome x ∈ X is
computed as Tr[P x

A ρA]. Notice that, in general, a POVM may contain some
null elements, corresponding to the situation in which some outcomes in X
never occur. Further, a POVM is said to be

• rank-one, whenever all its elements P x
A are non-zero and proportional

to rank-one projectors;

• projective, whenever all its elements P x
A are non-zero orthogonal pro-

jectors, i.e., P x
AP

x′
A = δx,x′P x

A;

• trivial, whenever each element P x
A is proportional to the identity matrix,

or is the zero matrix.

Any POVM on HA with outcome set X can also be understood as a
linear map from the set of density matrices on HA to the set of normalized
probability distributions on X . More generally, in operational quantum the-
ory a crucial role is played by completely positive trace-preserving (CPTP)
linear maps, also known as quantum channels, that is, linear maps transform-
ing density matrices on an input space HA to density matrices on an output
space HB, in such a way that parallel compositions are well-defined1. We will
denote any such a quantum channel as E : A → B for short. The Born rule
naturally associates to any quantum channel E : A→ B a trace-dual channel
E† : B → A, which maps POVMs on HB to POVMs on HA and is defined
by the equality Tr

[
E†(Y ) X

]
:= Tr[Y E(X)], for all linear operators Y on

HB and X on HA. It is easy to verify that a linear map E : A→ B is com-
pletely positive and trace-preserving if and only if its trace-dual E† : B → A
is completely positive and unit-preserving, i.e., E†(1B) = 1A.

Definition 1 (sharp POVMs). A POVM P = {P x
A}x∈X is called sharp,

whenever all its elements contain the real unit among their eigenvalues, i.e.,
there exist normalized vectors |ψx⟩A such that P x

A|ψx⟩A = |ψx⟩A for all x ∈ X .

1In particular, the notion of complete positivity is required so that a quantum channel
E remains a quantum channel even if it is extended with the identity map as E ⊗ id, for
any ancillary system.
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Due to the completeness relation, we also have that P x′
A |ψx⟩A = 0 for

all x′ ̸= x, meaning that the elements of a sharp POVM can be perfectly
“discriminated”, thus leading to a maximum informational power [20, 21].
The completeness relation also implies that the cardinality of the outcome
set of a sharp POVM cannot exceed the dimension of the underlying Hilbert
space, i.e., |X | ⩽ dA. POVMs that are not sharp are usually called unsharp
or fuzzy.

Notice that our definition of sharp POVMs differs from the usual one,
see e.g. [7, 9, 10], where sharp POVMs are instead defined as the projective
ones, i.e., those whose elements are all non-zero projectors, i.e., (P x

A)
2 =

P x
A ̸= 0 for all x ∈ X . More precisely, while all projective POVMs are sharp

according the our definition, the vice versa does not hold. However, sharp
POVMs are exactly those that possess the principal operational property
of projective POVMs, i.e., their being measurable in a repeatable way. In
fact, if repeatability is regarded as the reason making projective POVMs
“special”, then, it is sharpness (as defined here) and not projectivity the
right concept to consider: indeed, as discussed for example in Section II.3.5
of [22], a POVM is sharp (as defined here) if and only if it admits a repeatable
measurement. In particular, there exist sharp non-projective POVMs that
admit a repeatable measurement2. Nonetheless, in what follows we will also
see how conventional observables, i.e., rank-one projective POVMs, can be
singled out as the minimal sharp POVMs, for any given outcome set.

2.1 Preorders of POVMs

Two preorders that are relevant for the study of the mathematical properties
of POVMs, including their sharpness, are the quantum preprocessing preorder
and the classical postprocessing preorder [19], which are defined as follows.

Given two POVMs P = {P x
A}x∈X and Q = {Qx

B}x∈X , possibly defined on
different Hilbert spaces HA and HB but with the same outcome set X , we
say that P is preprocessing cleaner than Q, whenever there exists a quantum
channel E : B → A such that E†(P x

A) = Qx
B for all x ∈ X .

Further, given two POVMs P = {P x
A}x∈X and Q = {Qy

A}y∈Y , possibly
with different outcome sets but defined on the same Hilbert space HA, we say
that P is postprocessing cleaner than Q, whenever there exists a conditional

2With the difference that the corresponding repeatable measurement may not be of the
von Neumann–Lüders (or “square-root”) type [1, 23], but rather of the Gordon–Louisell (or
“measure-and-prepare”) type [24]. In order to discuss further the notion of repeatability
one should employ the concept of quantum instruments, but this point is beyond the scope
of the present paper. We refer the interested reader to [25, 22, 26] for a careful presentation
of the problem and some fundamental results.
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probability distribution µ(y|x) such that Qy
A =

∑
x µ(y|x)P x

A for all y ∈ Y .

Remark 1. Notice that a necessary condition for P to be preprocessing
cleaner than Q is that if, for some x ∈ X , P x

A = 0, then also Qx
B = 0.

That is, outcomes that never occur for P cannot occur for Q either. This is a
consequence of the fact that E† is linear element-wise, that is, on each POVM
element. Instead, the classical postprocessing preorder is more flexible: for
example, it may swap an outcome corresponding to a null POVM element
with an outcome corresponding to a non-zero operator.

The connection between sharpness and POVMs preorders arises from the
following result proved in Ref. [19].

Theorem 1. A POVM P = {P x
A}x∈X , defined on a Hilbert space HA and

with outcome set X , is sharp if and only if P is preprocessing cleaner than
any other POVM with the same outcome set X .

Remark 2. As we noticed already, a necessary condition to be sharp is that
dA ⩾ |X |. Hence, among all sharp POVMs, those that are “minimal” are
sharp POVMs defined on a Hilbert space HA with dA = |X |, and these can
only be rank-one projective POVMs. In this way, the quantum preprocessing
preorder is able to single out conventional non-degenerate observables as its
minimal greatest elements.

Remark 3. While Theorem 1 characterizes the greatest elements of the
quantum preprocessing preorder as sharp POVMs, it is also easy to identify
its smallest (or “maximally fuzzy”) elements as trivial POVMs3. This is
due to the fact that the map E† is linear and unit-preserving, so that any
trivial POVM on A, such as {p(x)1A}x∈X for some probability distribution
p(x), cannot be transformed into anything that is not trivial. In fact, using
quantum preprocessing channels, any trivial POVM can only be mapped into
itself (apart from changing the system). This is an indication that a resource
theory of sharpness must include more general operations than just quantum
preprocessing channels. We will return to this point in the next section.

Proof of Theorem 1. We briefly recount here the proof of the above theorem
for the sake of completeness. We begin by showing that any sharp POVM
is a greatest element for the quantum preprocessing preorder. If a POVM
P = {P x

A}x∈X is sharp, then there exist normalized vectors |ψx⟩A such that

3When the outcome set X is a singleton, there exists only one POVM, which is at
once greatest and smallest, sharp and trivial.
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P x
A|ψx′⟩A = δx,x′ |ψx′⟩A. This condition in particular implies that the normal-

ized vectors |ψx⟩A are also mutually orthogonal. Consider then the linear
operator from HB to HA ⊗ HB

V :=
∑
x∈X

|ψx⟩A ⊗
√
Qx

B .

Notice that it may be that, for some x, Qx
B = 0. (Instead, the POVM P

is assumed to be sharp.) It is easy to check that V is an isometry, since
V †V =

∑
xQ

x
B = 1B. Moreover, by direct inspection,

V †(P x
A ⊗ 1B)V = Qx

B ,

for all x ∈ X . Since the linear map V †(•A ⊗ 1B)V is by construction com-
pletely positive and identity-preserving, the above equation shows that P is
preprocessing cleaner than Q, for any Q, as claimed.

Conversely, let us suppose that P is preprocessing cleaner than Q, for any
other POVMQ. This is equivalent to say that, however we choose the POVM
elements Qx

B, there exists a completely positive unit-preserving linear map
E† : A → B such that E†(P x

A) = Qx
B for all x ∈ X . Let then Qx

B constitute
a sharp POVM, that is, all Qx

B’s have the real number one as an eigenvalue.
But since a completely positive unit-preserving linear map is spectrum-width
decreasing (see, e.g., Ref. [19]), the real unit must already be an eigenvalue
also of all P x

A’s, whence their sharpness. ■

Instead, the classical postprocessing preorder is not related with the
sharpness of POVMs, but rather to their being rank-one or not [27, 19].
For example, a POVM with repeated elements like the following{

1

2
|ψ1⟩⟨ψ1|A,

1

2
|ψ1⟩⟨ψ1|A,

1

2
|ψ2⟩⟨ψ2|A,

1

2
|ψ2⟩⟨ψ2|A, . . .

}
,

is a postprocessing clean, even though it is obviously unsharp. This arguably
is the reason why attempts to characterize POVMs sharpness using classical
postprocessings can only be partially successful, as noticed in [10].

3 Fuzzifying operations

In the light of Theorem 1 and Remark 3, it is tempting to conclude that
sharpness-non-increasing or fuzzifying operations exactly coincide with quan-
tum preprocessing channels. This however cannot be the case for a resource
theory of sharpness, as the following example shows. Let us consider two

6



trivial POVMs, such as {0,1} and {1, 0}. Since any quantum preprocessing
channel is linear and unit-preserving, as noticed in Remark 3, it is impossible
to transform {0,1} into {1, 0} or vice versa, since both 0 and 1 are fixed
points for any linear unit-preserving map. In fact, any trivial POVM on
system A can only be transformed into the corresponding trivial POVM on
B. This simple observation leads us to conclude that, if free operations were
given only by quantum preprocessing channels, the resulting resource theory
would have many inequivalent smallest, i.e., resource-free, elements. Instead,
one would like a resource theory of sharpness to have all trivial POVMs equiv-
alent to each other, following the prescription that resource-free objects in a
resource theory should all be freely available under free operations [11].

We thus introduce the following definition:

Definition 2 (sharpness preorder). Given two POVMs P = {P x
A}x∈X and

Q = {Qx
B}x∈X , possibly defined on different Hilbert spaces HA and HB but

with the same outcome set X , we say that P is sharper than Q, and write

P ⪰sharp
X Q , (1)

whenever there exists a quantum channel E : B → A, a trivial POVM
{p(x)1B}x∈X on B, and a number µ ∈ [0, 1], such that

Qx
B = µE†(P x

A) + (1− µ)p(x)1B ,

for all x ∈ X .

In other words, denoting by T(i) = {T x|i
B }x∈X the extremal trivial POVM

on B such that T
x|i
B = δx,i1B for all x, i ∈ X , then P is sharper than Q if

and only if Q belongs to the convex hull of {E†(P)} ∪ {T(i)}i∈X . The above
definition suggests the following

Definition 3 (fuzzifying operations). Given a POVM P = {P x
A}x∈X , a fuzzi-

fying operation on P is any transformation of the form

∀x ∈ X , P x
A 7→ µE†(P x

A) + (1− µ)p(x)1B , (2)

for some arbitrary but fixed probability µ ∈ [0, 1], probability distribution p(x),
and quantum preprocessing channel E† : A→ B.

Then, Definition 2 can be reformulated as follows: P ⪰sharp
X Q if and only

if there exists a fuzzifying operation transforming P into Q. Hence, as it was
the case for the quantum preprocessing preorder, we can see that the greatest
elements of ⪰sharp

X are all equivalent and coincide with sharp POVMs. Now,
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however, also all the smallest elements, i.e., trivial POVMs, turn out to be
equivalent to each other. This solves the problem that we raised in Remark 3.

But at this point another problem arises: fuzzifying operations, seen as
maps acting on the POVM elements P x

A, are in general not linear, since they
could transform zero operators into non-zero operators. But neither they are
combinations of quantum preprocessing and classical postprocessing4 of the
POVM P. Thus, the question is how fuzzifying operations can be understood
operationally. The answer is given by the following construction.

Given a finite outcome set X = {1, 2, . . . , N}, we take as the objects of the
theory not just POVMs with outcome set X , but rather families comprising
N+1 POVMs: the first POVM, which is the given POVM P whose sharpness
is being evaluated, together with theN extremal trivial POVMsT(i), with i =
1, . . . , N , introduced above. More explicitly, given a POVM P = {P x

A}x∈X ,
the corresponding object in the resource theory is given by the family

P ≡ {P0,P1,P2, . . . ,PN}
:= {P,T(1),T(2), . . .T(N)} (3)

=



P 1
A

P 2
A
...
PN
A

 ,


1A

0
...
0

 ,


0
1A
...
0

 , . . . ,


0
0
...
1A


 .

Notice that there is a one-to-one correspondence between POVMs P and
extended families P. Hence, in what follows, when writing P we will under-
stand it as the family of N + 1 POVMs that have the POVM P as its first
element, and the N extremal trivial POVMs, in the same order as in Eq. (3).

Since P is a family of POVMs, following [14] we regard it as a pro-
grammable POVM, where the program is an element i of the set I :=
{0} ∪ X = {0, 1, 2, . . . , N}. As schematically depicted in Fig. 1, a pro-
grammable POVM is a device with two inputs and one output: one quantum
input A, i.e., the quantum system being measured, one classical input i ∈ I,
i.e. the program deciding which POVM to measure, and one classical output,
i.e., the outcome x ∈ X .

We now want to show that fuzzifying operations on P can be seen as
preprocessing channels applied on the extended object P. We do this by
defining preprocessing channels on P : A × I → X in such a way that the
resulting device Q : B × I → X is such that

1. Q
x|0
B = E†

(∑N
i=0 µ(i)P

x|i
A

)
, for all x ∈ X ;

4In fact, as noticed in Ref. [10], classical postprocessing can increase sharpness, and
thus cannot be part of sharpness-non-increasing operations.

8



Figure 1: Given a POVM P with outcome set X , we uniquely associate
to it a programmable POVM P (in black). Correspondingly, any fuzzifying
operation on P is uniquely associated with an extended preprocessing on P (in
blue). The quantum preprocessing channel B → A is an arbitrary completely
positive trace-preserving linear map, while the classical preprocessing on the
program alphabet I := {0} ∪ X is restricted to act as the identity channel
on all program values different from zero. Free shared randomness between
the two local preprocessing channels is allowed (represented by the green
classical random variable R).

2. Q
x|i
B = δx,i1B, for all x ∈ X and all i ∈ {1, . . . , N}.

Notice that the above condition Q
x|0
B = E†

(∑N
i=0 µ(i)P

x|i
A

)
can be rewritten

as Eq. (2), with the replacements µ ↔ µ(0), so that (1 − µ) ↔
∑N

x=1 µ(x),

and p(x) ↔ µ(x)∑N
x=1 µ(x)

.

The above structure can be obtained if we take as free operations (again,
refer to Fig. 1 for a diagram):

1. all quantum preprocessing channels E mapping system B into system
A;

2. all classical preprocessing channels (i.e., conditional probabilities) from
I to I, acting identically on I \ {0};

3. convex combinations of any parallel compositions of the above.

We call the above class of preprocessing channels extended fuzzifying prepro-
cessings. Notice that these are all completely positive trace-preserving linear
maps by construction.

Hence, we have seen that fuzzifying operations given in Def. 3, even
though they are not linear in P, they can nonetheless be regarded as lin-
ear maps, more precisely, as extended fuzzifying preprocessings, acting on
the programmable device P. We summarize this discussion as follows:
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Theorem 2. Given two POVMs P = {P x
A}x∈X and Q = {Qx

B}x∈X , possibly
defined on different Hilbert spaces HA and HB but with the same outcome set
X , P ⪰sharp

X Q if and only if there exists an extended fuzzifying preprocessing
transforming P into Q.

4 EPR–Ozawa measurement correlations

In order to clarify in a mathematically rigorous way the meaning of the
statement, crucial for the EPR argument [28], that “two observables have
the same value”, Ozawa introduced the concept of quantum perfect correla-
tions [12, 13].

Definition 4. Given a state ρA on HA and two POVMs on A with the same
outcome set X , P = {P x

A}x∈X and R = {Zx
A}x∈X , we say that P and R are

perfectly correlated in state ρ if

1. they are jointly distributed in ρ, that is, Tr
[
P x
AZ

x′
A ρA

]
⩾ 0 for all

x, x′ ∈ X , and

2.
∑

x∈X Tr[P x
AZ

x
A ρA] = 1.

More generally, if two POVMs P and R are jointly distributed in state ρ,
their degree of correlation is defined as

κρ(P : R) :=
∑
x∈X

Tr[P x
AZ

x
A ρA] .

Remark 4. The sharpness measure PL(ρ;P) :=
∑

x Tr[ρA (P x
A)

2] introduced
in Eq. (6) of Ref. [10], is a special case of our degree of correlation: more
precisely, it coincides with the degree of autocorrelation κρ(P : P).

In what follows we will consider in particular the case in which the state
ρA is maximally mixed. In such a case, any two POVMs are always jointly
distributed, so that the degree of correlation can be discussed without further
assumptions. In that case, we will use the short-hand notation

κu(P : R) :=
1

dA

∑
x∈X

Tr[P x
A Zx

A] , (4)

where the subscript u stands for the “uniform”, i.e., maximally mixed state
1
dA
1A. Notice that, in this case, the degree of correlation can also be written

as follows:

κu(P : R) =
∑
x∈X

Tr
[
(tP x

A′ ⊗ Zx
A) |Φ+⟩⟨Φ+|A′A

]
,
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where |Φ+⟩A′A := 1√
dA

∑dA
i=1 |i⟩A′ ⊗ |i⟩A is the maximally entangled state

between A and an auxiliary system A′ ∼= A, and the left-hand superscript t•
denotes the transposition done with the respect to the basis {|i⟩}i used in
the definition of |Φ+⟩A′A. This shows that the degree of correlation κu(P : R)
is, in principle, experimentally observable for any pair of POVMs.

4.1 The “tuning” preorder

When computing the degree of uniform correlation in Eq. (4), let us imagine
that the POVM R plays the role of a “reference measurement”, with respect
to which the outcome set is fixed. Let us hence consider a reference POVM
R = {Zx

R}x∈X , with outcome set X and defined on some reference system R
with Hilbert space HR.

Fixed a reference POVM R = {Zx
R}x∈X , we can now measure how another

POVM, say, P = {P x
A}x∈X , with the same outcome set of the reference but

otherwise arbitrary, can be “tuned” with the reference R. Here, we focus on
the following quantity

κ∗u(R|P) : = max
L

κu(L(P) : R) (5)

= max
L

1

dR

∑
x∈X

Tr[L(P x
A) Z

x
R] ,

where the optimization is done over all fuzzifying operations L, as given
in Eq. (2). In other words, the quantity κ∗u(R|P) measures the degree of
uniform correlations that can be established between a given POVM P and
the reference R by means of a sharpness-non-increasing operation applied on
P. We will refer to the quantity κ∗u(R|P) as the tuning degree of P with
respect to R. Notice that while the degree of correlation (4) is symmetric
in the POVMs, the tuning degree (5) is not, since the optimization is done
only on one of the two POVMs. The notation κ∗u(R|P) reflects this. Notice
also that other choices for the tuning process may be done: this freedom is
similar to what happens, for example, in the resource theory of entanglement,
for which there exist different, though all operationally meaningful, notions
of entanglement manipulation, such as LOCC [29] or LOSR [30]. However,
in the context of the present paper it is natural to define the optimization
with respect to the same class of transformations that is used to define the
sharpness preorder ⪰sharp

X in Definition 2.
From the definition (5), it is clear that a sharp POVM P allows for ideal

tuning. Since, as Theorem 1 states, sharp POVMs are exactly those that
can be transformed into any other POVM by means of a suitable fuzzifying
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operation (in fact, a linear quantum preprocessing suffices), the quantity
κ∗u(R|P), if P is sharp, can be pushed up to its maximum value, namely,

κ∗u(R) := max
{Z̃x

R}x: POVM

1

dR

∑
x∈X

Tr
[
Z̃x

R Zx
R

]
, (6)

which now only depends on the reference R. But even if the POVM P is
not sharp, the tuning degree κ∗u(R|P), for any given reference R, can still be
considered as a measure of the sharpness of P (see also Remark 4 above).

Remark 5. Notice that the quantity appearing in Eq. (6) is equal to the
maximum probability of correctly discriminating among the states of the
ensemble {p(x), ρ(x)}x∈X , where p(x) := 1

dR
Tr[Zx

R] and ρxR := 1

Tr[Zx
R]
Zx

R. It

can thus be effectively computed using a simple semi-definite program, see
for example Section 3.1.2 of Ref. [31]. Moreover, by using the theory of pretty
good measurements [32, 33] , it is also possible to show that

κ∗u(R) ⩾ κu(R : R) ⩾ 2κ∗u(R)− 1 ,

that is, the degree of autocorrelation considered in Remark 4 constitutes a
“pretty good” estimate of κ∗u(R), whenever κ

∗
u(R) is large enough.

We now use the operational task of tuning to compare two POVMs with
the same outcome set as follows.

Definition 5 (tuning preorder). Given a reference POVM R = {Zx
R}x∈X and

two POVMs P = {P x
A}x∈X and Q = {Qx

B}x∈X , possibly defined on different
Hilbert spaces HA and HB but with the same outcome set as the reference
R, we say that P is more tunable than Q with respect to R, and write

P ⪰t
R Q , (7)

whenever κ∗u(R|P) ⩾ κ∗u(R|Q).
Further, given two POVMs P = {P x

A}x∈X and Q = {Qx
B}x∈X , possibly

defined on different Hilbert spaces HA and HB but with the same outcome
set X , we say that P is always more tunable than Q, and write

P ⪰t
X Q , (8)

whenever P ⪰R Q for all reference POVMs R with outcome set X .
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5 Equivalence of comparisons

In this section we develop the theory of statistical comparison for the sharp-
ness preorder that we introduced above. Statistical comparison is a concept
introduced by Blackwell [17] with the aim of extending the ideas of Lorenz
curves and majorization [34, 35] to more general scenarios. It establishes an
equivalence between two kinds of preorders: a “sufficiency” preorder, analo-
gous to the majorization preorder, which is given by the existence of a suitable
transformation (e.g., a doubly stochastic matrix, in the case of majorization)
between two objects; and a “game-theoretic” preorder, which instead con-
cerns the comparison of the expected performance with respect to a certain
class of statistical tests (e.g., hypothesis testing, in the case of Lorenz curves).
Such an equivalence between, on the one hand, the existence of a transfor-
mation and, on the other hand, the comparison of operational utilities (i.e.,
the “monotones” of resource theories), summarizes the core concept that lies
at the basis of all resource theories [11]. In this spirit, various generalizations
of Blackwell’s theory of statistical comparison [18, 36, 37, 38, 39, 40, 41]
have been successfully applied in several specific resource-theoretic scenar-
ios, including entanglement and nonlocality theory [30, 42, 43, 44], quantum
communication theory [45, 46], open quantum systems dynamics [47, 48],
quantum coherence [49], quantum thermodynamics [50, 51], and quantum
measurement theory [36, 52, 14, 15, 16].

The Blackwell–like theorem that we prove in this work is the following.

Theorem 3. Given two POVMs P = {P x
A}x∈X and Q = {Qx

B}x∈X , possibly
defined on different Hilbert spaces HA and HB but with the same outcome
set X , P can be transformed into Q by means of a fuzzifying operation, that
is,

P ⪰sharp
X Q ,

if and only if P is always more tunable than Q, that is,

P ⪰t
X Q . (9)

Moreover, the comparison (9) can be restricted without loss of generality to
reference POVMs defined on the same Hilbert space as Q, i.e., HB.

Hence, the tuning degrees κ∗u(R|P), for varying reference POVM R, pro-
vide a complete set of monotones for the resource theory of sharpness.

Remark 6. In fact, the proof shows that another condition, at first sight
weaker, is in fact equivalent to (9), i.e.,

κ∗u(R|P) ⩾ κu(Q : R) , (10)
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for all reference POVMs R = {Zx
B}x∈X . Notice that the right-hand side in

the above equation is not optimized.

Proof of Theorem 3. Our aim is to show that the condition about the exis-
tence of a fuzzifying operation transforming P into Q, can be equivalently
written as Eq. (9).

From Theorem 2, we know that P ⪰sharp
X Q, if and only if there exists

a fuzzifying preprocessing transforming the extended programmable device
corresponding to P, i.e., P, into the extended programmable device corre-
sponding to Q, i.e., Q. For notational convenience, let us denote the fuzzi-
fying preprocessing as L and the elements of the resulting programmable
device as L(P)x|iB .

Let us now consider an arbitrary but fixed complete set of density matrices
{γbB}b∈B, in the sense that the linear span of {γbB}b∈B coincides with the set
of all linear operators on HB. Then, P ⪰sharp

X Q if and only if

Tr
[
L(P)x|iB γbB

]
= Tr

[
Q

x|i
B γbB

]
, ∀x,∀i,∀b . (11)

Looking at the two conditional distributions above as vectors in R|X |×|I|×|B|,
that is, pL and q, respectively, let us consider the subset of R|X |×|I|×|B| defined
as

C(P) :=
{
pL : pL(x|i, b) = Tr

[
L(P)x|iB γbB

]}
,

where L can range over all fuzzifying preprocessings. Then, Eq. (11) can be
equivalently rewritten as

q ∈ C(P) . (12)

The crucial observation now is that, since the definition of fuzzifying pre-
processings involves free shared randomness, they form a convex set. For this
reason, also C(P) is a convex subset of R|X |×|I|×|B|. Hence, as a consequence
of the separation theorem for convex sets, we can rewrite condition (12) in
terms of linear functionals as follows

λ · q ⩽ max
pL∈C(P)

λ · pL , ∀λ ∈ R|X |×|I|×|B| ,

which, once rewritten in a more explicit form, becomes

max
L

∑
x,i,b

λxib Tr
[
L(P)x|iB γbB

]
⩾

∑
x,i,b

λxib Tr
[
Q

x|i
B γbB

]
, ∀λxib ∈ R .
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Introducing the self-adjoint operators Γxi
B :=

∑
b λxibγ

b
B, the above condition

becomes

max
L

∑
x,i

Tr
[
L(P)x|iB Γxi

B

]
⩾

∑
x,i

Tr
[
Q

x|i
B Γxi

B

]
, ∀ self-adjoint {Γxi

B}x,i .

First, we notice that since, by construction, L(P)x|iB = Q
x|i
B = δx,i1B for

all x, i ∈ X and any choice of the fuzzifying process L, we can in fact focus
only on the case i = 0. Therefore, in what follows, we will only consider the
conditions

max
L

∑
x

Tr
[
L(P)x|0B Γx

B

]
⩾

∑
x

Tr[Qx
B Γx

B] , ∀ self-adjoint {Γx
B}x . (13)

The next step is to notice that, since
∑

x L(P)
x|0
B =

∑
xQ

x
B = 1B, it is

possible to shift and rescale the operators Γx
B in such a way that, without

loss of generality, we can restrict condition (13) to families of operators {Zx
B}

such that
∑

x Z
x
B = 1B and Zx

B ⩾ 0 for all x ∈ X , i.e., POVMs R = {Zx
B}x∈X

on B. Hence, we have been able to rewrite condition (13), which we recall is
equivalent to P ⪰sharp

X Q, as follows:

max
L

∑
x

Tr
[
L(P)x|0B Zx

B

]
⩾

∑
x

Tr[Qx
B Zx

B] , ∀ POVMs R = {Zx
B}x ,

namely,

κ∗u(R|P) ⩾ κu(Q : R) , ∀ POVMs R = {Zx
B}x . (14)

Finally, since the inequality κ∗u(R|Q) ⩾ κu(Q : R) is true by definition, we
reach the conclusion that if condition (9) holds, then also condition (14)
holds, which in turn is equivalent to (11). Hence, we have proved that if
P ⪰t

X Q then P ⪰sharp
X Q.

The converse is trivial: if P ⪰sharp
X Q then obviously any tuning degree

that can be achieved with Q can also be achieved with P, simply because the
latter can be transformed into the former, and the compositions of fuzzifying
operations is again a fuzzifying operation. ■

Since sharp POVMs and trivial POVMs are all equivalent under sharpness-
non-increasing operations, we immediately obtain the following:

Corollary 3.1. All sharp POVMs achieve exactly the same tuning degree
for any reference POVM. The same holds for all trivial POVMs. Hence, for
any reference POVM R = {Zx

R}x∈X and any POVM P = {P x
A}x∈X ,

1

dR
max

x
Tr[Zx

R] ⩽ κ∗u(R|P) ⩽ κ∗u(R) .
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In particular, any value κ∗u(R|P) strictly larger than the trivial lower bound
provides a measurement device-independent witness of the non-triviality of
P.

6 Summary of the theory

For the reader’s convenience, we summarize the main points of the resource
theory of sharpness that we have derived.

• The objects of the theory are POVMs. In particular, this means that
our resource theory of sharpness does not depend on the specific nu-
merical values associated with each measurement outcome, i.e., the
observable’s eigenvalues, nor on any particular instrument or measure-
ment process used to realize the POVM.

• The free operations are given by the class of fuzzifying operations, which
is by construction convex and closed under sequential composition (see
Definition 3). Though fuzzifying operations are neither quantum pre-
processings nor classical postprocessings of the POVM alone, they can
be seen as the preprocessing of a programmable measurement device
that extends the given POVM in a one-to-one way.

• The greatest objects in the resource theory of sharpness are, of course,
sharp POVMs, and they are all equivalent, in the sense that any sharp
POVM can be freely transformed into any other sharp POVM with
the same outcome set. We recall that, in this work, we define sharp
POVMs in terms of the operational property of being measurable in a
repeatable way (see Definition 1).

• The smallest objects are trivial POVMs, i.e., POVMs whose elements
are all proportional (including the possibility of zero elements) to the
identity operator. As it happens for sharp POVMs, also trivial POVMs
are, as one would expect, all equivalent.

• The sharpness monotones are given by the tuning degrees κ∗u(R|P), for
varying reference POVM R, defined in Eq. (5).

• A Blackwell–like theorem for sharpness holds, i.e., a POVM can be
transformed into another POVM by a free operation, if and only if
there exists no tuning degree for the latter that is higher than for the
former. This automatically implies that all sharp POVMs and all triv-
ial POVMs achieve exactly the same tuning degree for any reference
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POVM, as given in Corollary 3.1. By normalizing these two num-
bers, our sharpness monotones satisfy Busch’s requirements for sound
sharpness measures [7]. Moreover, sharpness monotones can be used
to witness in a measurement device-independent way the non-triviality
of a POVM, exactly in the same way that semiquantum games can
witness non-separability [30, 53].
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