分野別主要論文
    理論物理学
  1. M. Ozawa, Measurement breaking the standard quantum limit for free-mass position, Phys. Rev. Lett. 60 (1988), 385-388.
  2. M. Ozawa, Quantum-mechanical models of position measurements, Phys. Rev. A 41, 1735-1737 (R) (1990).
  3. M. Ozawa, Does a conservation law limit position measurements? Phys. Rev. Lett. 67 (1991), 1956--1959.
  4. H.P. Yuen and M. Ozawa, Ultimate information carrying limit of quantum systems, Phys. Rev. Lett. 70 (1993), 363-366.
  5. M. Ozawa, Quantum non-demolition monitoring of universal quantum computers, Phys. Rev. Lett. 80 (1998), 631-634.
  6. M. Ozawa, Measurements of nondegenerate discrete observables, Phys. Rev. A 62, 062101(1-13) (2000).
  7. M. Ozawa, Operations, disturbance, and simultaneous measurability, Phys. Rev. A 63, 032109 (1-15) (2001),
  8. M. Ozawa, Conservation laws, uncertainty relations, and quantum limits of measurements. Phys. Rev. Lett. 88 (2002), 050402 (1-4).
  9. M. Ozawa, Conservative quantum computing, Phys. Rev. Lett. 89 (2002), 057902 (1-4).
  10. M. Ozawa, Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement, Phys. Rev. A 67 (2003), 042105 (1-6).
  11. M. Hotta and M. Ozawa, Quantum estimation by local observables, Phys. Rev. A 70, 022327 (1-13) (2004).
  12. M. Hotta, T. Karasawa, and M. Ozawa, Ancilla-assisted enhancement of channel estimation for low-noise parameters, Phys. Rev. A 72, 052334 (1-11) (2005).
  13. Y. Kawano and M. Ozawa, Quantum gates generated by rotationally invariant operators in a decoherence-free subsystem, Phys. Rev. A 73, 012339 (1-8) (2006).
  14. G. Kimura, H. Tanaka, and M. Ozawa, Solution to the mean King's problem with mutually unbiased bases for arbitrary levels, Phys. Rev. A 73, 050301(R) (1-4) (2006).
  15. J. Gea-Banacloche and M. Ozawa, Minimum-energy pulses for quantum logic cannot be shared, Phys. Rev. A 74, 060301(R) (1-4) (2006).
  16. T. Karasawa, and M. Ozawa, Conservation-law-induced quantum limits for physical realizations of the quantum NOT gate, Phys. Rev. A 75, 032324 (1-16) (2007).
  17. G. Kimura, B.K. Meister, and M. Ozawa, Quantum limits of measurements induced by multiplicative conservation laws: Extension of the Wigner-Araki-Yanase Theorem, Phys. Rev. A 78, 032106 (1-7) (2008).
  18. J. Erhart, S. Sponar, G. Sulyok, G. Badurek, M. Ozawa, and Y. Hasegawa, Experimental demonstration of a universally valid error-disturbance uncertainty relation in spin-measurements, Nat. Phys. 8, 185-189 (2012).
  19. S-Y. Baek, F. Kaneda, M. Ozawa, and K. Edamatsu, Experimental violation and reformulation of the Heisenberg error-disturbance uncertainty relation, Sci. Rep. 3, 2221 (1-5) (2013).
  20. G. Sulyok, S. Sponar, J. Erhart, G. Badurek, M. Ozawa, and Y. Hasegawa, Violation of Heisenberg's error-disturbance uncertainty relation in neutron spin measurements, Phys. Rev. A 88, 022110 (2013).
  21. F. Kaneda, S.-Y. Baek, M. Ozawa, and K. Edamatsu, Experimental test of error-disturbance uncertainty relations by weak measurement, Phys. Rev. Lett. 112, 020402 (2014).
  22. F. Buscemi, M.J.W. Hall, M. Ozawa, and M.M. Wilde, Noise and disturbance in quantum measurements: An Information-theoretic approach, Phys. Rev. Lett. 112, 050401 (2014).
  23. G. Sulyok, S. Sponar, B. Demirel, F. Buscemi, M.J.W. Hall, M. Ozawa, and Y. Hasegawa, Experimental test of entropic noise-disturbance uncertainty relations for spin-1/2 measurements, Phys. Rev. Lett. 115, 030401 (1-5) (2015).
  24. M. Ozawa, Heisenberg's original derivation of the uncertainty principle and its universally valid reformulations, Curr. Sci. 109, 2006-2016 (2015).
  25. B. Demirel, S. Sponar, G. Sulyok, M. Ozawa, and Y. Hasegawa, Experimental test of residual error-disturbance uncertainty relations for mixed spin-1/2 states, Phys. Rev. Lett. 117, 140402 (1-5) (2016).
  26. M. Ozawa, Soundness and completeness of quantum root-mean-square errors, npj Quantum Inf. 5, 1 (1-8) (2019).
    数理物理学
  1. M. Ozawa, Optimal measurements for general quantum systems, Rep. Math. Phys. 18, 11-28 (1980).
  2. M. Ozawa, Quantum measuring processes of continuous observables, J. Math. Phys. 25 (1984), 79-87.
  3. M. Ozawa, Conditional probability and a posteriori states in quantum mechanics, Publ. RIMS, Kyoto Univ. 21, 279-295 (1985).
  4. M. Ozawa, Continuous affine functions on the space of Markov kernels, Teorija Verojatnostei i ee Primenenija 30, 486-498 (1985); Theory Prob. Appl. 30, 516-528 (1985).
  5. M. Ozawa, Concepts of conditional expectations in quantum theory, J. Math. Phys. 26, 1948-1955 (1985).
  6. M. Ozawa, On information gain by quantum measurements of continuous observables, J. Math. Phys. 27, 759-763 (1986).
  7. M. Ozawa, Canonical approximate quantum measurements, J. Math. Phys. 34, 5596-5624 (1993).
  8. I. Ojima and M. Ozawa, Unitary representations of the hyperfinite Heisenberg group and the logical extension methods in physics, Open Sys. & Information Dyn. 2, 107-128 (1993).
  9. M. Ozawa, Phase operator problem and macroscopic extension of quantum mechanics, Ann. Phys. (N.Y.) 257 (1997), 65-83.
  10. M. Ozawa, An operational approach to quantum state reduction, Ann. Phys. (N.Y.) 259 (1997), 121-137.
  11. H. Yamashita and M. Ozawa, Nonstandard representations of the canonical commutation relations, Rev. Math. Phys. 12 (2000), 1407-1427.
  12. M. Ozawa, Uncertainty principle for quantum instruments and computing, Int. J. Quant. Inf. 1, 569--588 (2003).
  13. M. Ozawa, Uncertainty relations for noise and disturbance in generalized quantum measurements, Ann. Phys. (N.Y.) 311, 350-416 (2004).
  14. M. Ozawa, Quantum perfect correlations, Ann. Phys. (N.Y.) 321, 744-769 (2006).
  15. M. Ozawa, Mathematical foundations of quantum information: Measurement and foundations, Sugaku Expositions 27, 195-221 (2014).
  16. K. Okamura and M. Ozawa, Measurement theory in local quantum physics, J. Math. Phys. 57, 015209 (1-29) (2016).
  17. M. Ozawa and A. Khrennikov, Application of theory of quantum instruments to psychology: Combination of question order effect with response replicability effect, Entropy 2020, 22, 37 (2020).
    数学基礎論・関数解析学
  1. M. Ozawa, Boolean valued interpretation of Hilbert space theory, J. Math. Soc. Japan 35, 609-627 (1983).
  2. M. Ozawa, Boolean valued analysis and type I AW*-algebras, Proc. Japan Acad. 59A (1983), 368-371.
  3. M. Ozawa, A classification of type I AW*-algebras and Boolean valued analysis, J. Math. Soc. Japan 36 (1984), 589-608.
  4. M. Ozawa, Nonuniqueness of the cardinality attached to homogeneous AW*-algebras, Proc. Amer. Math. Soc. 93, 681-684 (1985).
  5. M. Ozawa, A transfer principle from von Neumann algebras to AW*-algebras, J. London Math. Soc. (2) 32, 141-148 (1985).
  6. M. Ozawa, Boolean valued analysis approach to the trace problem of AW*-algebras, J. London Math. Soc. (2) 33, 347-354 (1986).
  7. M. Ozawa and K. Saito, Embeddable AW*-algebras and regular completions, J. London Math. Soc. (2) 34, 511-523 (1986).
  8. T. Hinokuma and M. Ozawa, Conversion from nonstandard matrix algebras to standard factors of type II1, Ill. J. Math. 37, 1-13 (1993).
  9. M. Ozawa, Forcing in nonstandard analysis, Ann. Pure Appl. Logic 68 (1994), 263-297.
  10. M. Ozawa, Scott incomplete Boolean ultrapowers of the real line, J. Symb. Log. 60, 160-171 (1995).
  11. M. Ozawa, Transfer principle in quantum set theory, J. Symb. Log. 72, 625-648 (2007).
  12. M. Ozawa, Quantum set theory extending the standard probabilistic interpretation of quantum theory, New Generat. Comput. 34, 125-152 (2016).
  13. M. Ozawa, Orthomodular-valued models for quantum set theory, Rev. Symb. Log. 10, 782-807 (2017).
  14. A. Doering, B. Eva, M. Ozawa, A bridge between Q-worlds, Rev. Symb. Log., 1-40 (2020).
    理論計算機科学
  1. M. Ozawa and H. Nishimura, Local transition functions of quantum Turing machines, Theoret. Informatics and Appl. 34, 379-402 (2000).
  2. H. Nishimura and M. Ozawa, Computational complexity of uniform quantum circuit families and quantum Turing machines, Theor. Comput. Sci. 276, 147-181 (2002).
  3. M. Ozawa, Halting of quantum Turing machines, Lecture Notes in Computer Science 2509, 58-65 (2002).
  4. H. Nishimura and M. Ozawa, Uniformity of quantum circuit families for error-free algorithms, Theor. Comput. Sci. 332, 487- 496 (2005).
  5. H. Nishimura and M. Ozawa, Perfect computational equivalence between quantum Turing machines and finitely generated uniform quantum circuit families, Quantum Inf. Process. 8, 12-24 (2009).
    科学哲学
  1. M. Ozawa and T. Waragai, Set theory and Lesniewski's ontology, Ann. Japan Assoc. Phil. Sci. 6, 261-272 (1985).
  2. M. Ozawa, Statistical inference and quantum measurement, Ann. Japan Assoc. Phil. Sci. 7, 185-194 (1989).
  3. M. Ozawa, Quantum state reduction and the repeatability hypothesis, Ann. Japan Assoc. Phil. Sci. 11, 107-121 (2003).
  4. M. Ozawa, Quantum reality and measurement: A quantum logical approach, Found. Phys. 41, 592-607 (2011).
  5. M. Ozawa and Y. Kitajima, Reconstructing Bohr's reply to EPR in algebraic quantum theory, Found. Phys. 42, 475-487 (2012).
Back